
Chameleon: A Scalable and Adaptive Permissioned
Blockchain Architecture

Guobiao He
School of Electric and Information

Engineering
Beijing Jiaotong University

Beijing, China
17111014@bjtu.edu.cn

 Wei Su
School of Electric and Information

Engineering
Beijing Jiaotong University

Beijing, China
wsu@bjtu.edu.cn

Shuai Gao
School of Electric and Information

Engineering
Beijing Jiaotong University

Beijing, China
shgao@bjtu.edu.cn

Abstract—Designing blockchain architecture is still an open
question and encounters a lot of challenges such as scalability,
security, high utilization and so on. In this paper, we propose
Chameleon, a scalable and adaptive permissioned blockchain
architecture. We adopt the principles of non-forking, high
security, scalable and high utilization to design the Chameleon
to be suitable for next generation blockchain architecture. In
Chameleon, we introduce credit value which can only be
acquired through honest behavior to enhance the security of
the consensus algorithm. We also introduce the QoS of
transactions to meet the various needs of different users. While
previous work using sharding to improve the scalability, they
either store all transactions in every area or just work
independently, it either causes too much redundant data or low
resource utilization. Combined with the cloud storage,
Chameleon partition the nodes into different area according to
different scenario, every area process their own transactions
and can also cooperate with each other dynamically to improve
transaction throughput and resource utilization.

Keywords—permissioned blockchain, scalable, adaptive, QoS

I. INTRODUCTION

Blockchain is essentially a distributed ledger, Blockchain
technology have a lot of significant features such as
decentralized, transparent, can’t be tampered, etc. These
features can be used in a variety of applications like financial
transactions, supply chain management, data provenance,
credential management, etc. The essential driving force
behind blockchain technology is people’s needs of autonomy,
openness, transparency, high efficiency and trust. Blockchain
defines the ownership of data property which is the
cornerstone in Internet of Value, this will greatly unleash the
potential ability of data. However, designing a scalable,
secure and high utilization blockchain architecture to meet
various application scenario is still an open question.

Recently, the popularity of CryptoKitties game in
Ethereum cause the network congestion and the important
money transfer transaction have to wait for almost half a day.
This because that current transaction has no priority and it
also don’t have effective measures to cope with large amount
of bursting transactions. Thus the quality of transaction
service won’t be guaranteed under the overload situation. We
focus on solving these challenges using the advantages of the
permission blockchain architecture. Different from the open
blockchain, a permissioned blockchain have the control layer
to govern or coordinate the network behavior.

This paper presents Chameleon, a dynamic adaption and
scalable permissioned blockchain architecture. There are four
layers in Chameleon: control and authentication layer, cloud
storage layer, consensus and processing layer and access
layer.

 The control and authentication layer have two functions,
they are issuing certifications and load balancing. In previous
work, no architecture had considered classifying different
transactions and perform transaction-level load balancing.
We introduce the QoS of transaction and perform
transaction-level load balancing to meet different kind of
requirements and greatly improve resource utilization.

The cloud storage layer to solve the scalability problems
in specific scenarios , the cloud can be a local cloud, edge
cloud or core cloud. The consensus nodes only have to store
one epoch of transaction block and the previous transaction
block will be stored in the cloud. Every epoch can be one day
or one week. This will greatly reduce the storage burden and
the storage capacity requirement of the consensus node.

The consensus and processing layer is mainly used to
process transactions and reach consensus, the nodes are
divided into different areas according to different scenarios.
Different area can adopt the different consensus protocol to
meet their own specific needs ,this can improve the resource
utilization of the system.

We introduce an improved byzantine agreement protocol
called RLSCV(Random Leader Selection based on Credit
Value) inspired by Algorand which guarantee the security of
system by the overall balance in consensus nodes. Our
improved byzantine agreement protocol choose leader
randomly based on the credit value to replace the previous
the deterministic and predictable leader election method.
This method improve the security of the system from two
aspects: one is that leader selection based on credit value
which can only be acquired by honest behavior, the higher
the credit value, the higher probability to be selected as a
leader; another aspect is that the random selection of the
leader can resist the Dos attack during the election.

The access layer allows client to register corresponding
services and obtain certificate in control and authentication
layer.

Contributions: we claim the following contributions:
We introduce the QoS of transaction and perform
transaction-level load balancing to meet different kind
of requirements and greatly improve resource
utilization.

We introduce improved byzantine consensus protocol
RLSCV which can greatly guarantee the security and
the scalability of the system

We introduce a collaborative mechanism interacting
with the cloud storage infrastructure to solve the
problem of storage scalability.

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

87

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

II. RELATED WORK

There are many kinds of open and permissioned
blockchain architecture. Here, we present the most popular
ones to analyze the challenges and unsolved problems of
these architectures.

A. Elastico:
Elastico is a sharding protocol for open blockchain. It use

PoW to generate identity of processor, these processors are
organized into committee according to some certain identity
features in every sharding [1].

There are also a lot of challenges in Elastico :
1) All nodes must store all transaction data in every

sharding, it is a great challenge for the storage ability.
2) Elastico changes committee every epoch ,so it was not

possible to process transactions during the time of changing
epoch.

3) Every sharding in Elastico haves to be the same to
ensure the normal operation of the system ,it can’t meet the
different requirements of different scenarios.

B. Omniledger
Different from Elastico’s periodically reconfiguring

committees based on PoW, Omniledger periodically
reconfigures committees based on RandHerd. Although
Omniledger can scale in nodes and transactions, There are
several problems unsolved[2].

 1) Omniledger makes sharding randomly, It is based on
the assumption that all nodes have the same kind of ability
and all sharding deal with same kind of transactions. It can’t
guarantee the QoS of different transactions.

2) Omniledger which is client-driven atomic commit
protocols is vulnerable to DoS, client can flood transaction to
every sharding since cross-sharding transactions are
randomly assigned to sharding for processing.

C. Algorand:
In Algorand, users check for themselves whether or not

they should play a role in the committee for the next round
by seeing if the output of a verifiable random function is less
than a certain value. As participants start playing their roles,
they can include information in their messages that allows
other participants to check that they are in fact eligible[3].

Although Algorand is not susceptible to either targeted
compromises or DoS attacks and improve the throughput
greatly compared with bitcoin, it has many other limitations.

1) Algorand rely on a large number of nodes to
participate in and the honest majority of money to guarantee
system security, but as the transaction volume increases
sharply every day, more and more nodes will not be able to
participate in the system operation after a long period
because of the limitation of storage ability.

2) Algorand is designed to solve the scalability of
cryptocurrency, it don’t suitable for many other scenarios.

D. Hyperledger Fabric
Fabric have two kinds of nodes, these are peer and order.

Peer nodes in charge of endorsement and storing the blocks,
order nodes in charge of ordering the transactions. Fabric can
be divided into different channels according to different
scenarios[4].

There are a several problems unsolved in fabric:

1) Fabric order nodes run the classic or simple BFT
consensus which is vulnerable to DoS attack because the
leader selection was predictable.

2) Different channel work separately in fabric and can’t
cooperate each other to improve the transaction performance

3)In fabric, the client can’t participate the consensus
process, consensus only happens in peer and order nodes.

III. SYSTEM ARCHITECTURE

This section presents our system architecture and our
design concept.

A. Overview of Chameleon
There are four layers in our permissioned blockchain

architecture Chameleon as shown in Fig.1: control and
authentication layer, cloud storage layer, consensus and
processing layer and access layer.

CA

Consensus Layer Control and authentication Layer

Cloud Storage Layer

Node

Area-1ea 1

Node

Node

Issue Liscense module

Load Balancing Module

Core Cloud

Consensus Layer

Node

Area-nea n

Node

Node

Edge
Cloud

Node

Edge
Cloud

Node

Local
Cloud

Local
Cloud

Access Layer

Fig. 1 System architecture of chameleon

Our design concept:

1) QoS of transaction: to meet the requirements of variety
of applications, blockchain must be divided into several areas
according to applications scenarios to process transactions
efficiently. Transaction must have different kinds of priority
to guarantee the QoS.

2) Dynamic Adaption: Different area can adjust the sub-
area or cooperate with other area dynamically to deal with
the large amount of burst transaction in certain period. This
can improve the resource utilization and enhance the ability
of blockchain automation management.

3) Based on Trust: we believe the essential driving force
behind blockchain technology is people’s needs of autonomy,
openness and transparency. Blockchain will play a
fundamental role in the future value internet and trust will be
the base stone, so we use the credit value of all honest nodes
to guarantee the trust and security in Chameleon.

4) Combining with Cloud. Blockchain is not meant to
subvert all existing internet infrastructures. In most
conditions, it only needs to enhance the properties of
Blockchain and maximize the cooperation with existing
systems such as cloud services and edge computing facilities.
This can reduce the excessive redundant data and solve the
storage scalability problems in blockchain.

88

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

System assumption: we assume the honest nodes is more
than 2/3 in every area, all honest nodes is well connected and

will receive the message within a known maximum delay.
Processing flow
1) The client in the accessing layer send request to the

control and authentication layer (CA) to sign up the
corresponding service, client can choose to participate into
the consensus process or not, the CA will endorse the
transaction according to the registration information. The
client receive enough endorsement and send transaction to
the corresponding area.

2) Every area will run improved byzantine consensus
protocol RLSCV to generate transaction block and can
request to the CA for dividing into different sub-areas to
speed up transaction processing. After the consensus, the
block will be stored in every nodes. The blocks will be stored

in the Cloud side after one epoch such as one day or one
week. Only the previous epoch block header will be recorded
in every nodes to guarantee the consistency.

 3) The local, edge and the core cloud will send ACK to
confirmation the storage information and the node in every
area will run RLSCV consensus to make sure the ACK
message have been received by most of the nodes and then
start the next epoch.

4) The CA will collect all the load and resource
utilization in every area and trigger load balancing
mechanism when load exceeds a certain threshold.

B. Transaction Format
We define the transaction format in TABLE I to realize

QoS and transaction level load balancing in Chameleon.

TABLE I. TRANSACTION FORMAT

Transaction Type Transaction ID Area ID Subarea ID Destination Area QoS Endorsement
of CA Content

1 ordinary transaction
2 cross-area transaction
3 cooperative
transaction
4 sub-area transaction

Transaction- x Area-n Subarea m
for cooperative and

cross-area transaction
use

1) network control
2) instant processing
3) accelerate
4) ordinary
5) to be reserved

Signature of
CA

Specific
content

Transaction Type is used to distinguish different kind of
transactions and the area will trigger corresponding
processing. There are four transaction type in Chameleon.
Ordinary transaction can only be processed in one specific
area. Cross-area transaction is use to address the needs of
data trading or data sharing between different area.
Cooperative transaction is to address the needs of transaction
level resource scheduling under the situation of overload.
Sub-area transaction is used to address the needs of dividing
into several sub-area to improve the transaction throughput.

Transaction ID is used to identify the transaction, Area
ID and sub-area ID is used to identify the area and sub-area,
if there is no sub-area in one area, the sub-area ID is zero by
default.

Destination Area is used to specific the light load area or
specific the area for cross-area transaction. When there are a
large amount of overload burst transactions in one area, CA
will trigger the load balancing mechanism to share some
transaction into the other light load area.

QoS is use to meet the different requirement of
transaction such as delay-sensitive transactions must be
processed instantly. We reserve the 8 bit for QoS, i.e. 64
kinds of transaction type just as the same with Differentiated
Services Code Point in the Internet. Now, there are four
kinds of transaction type ,the others is for reservation in the
future.

Endorsement of CA is used to issue a certificate for the
transaction.

C. Consensus Layer
PBFT(Practical Byzantine Fault Tolerance) consensus is

first proposed in 1999 and widely used in permissioned
blockchain architecture[5]. However, leader selection in
PBFT consensus are according to the order of node number.
As the leader selection can be predicted, it’s easy to be the

adversary start the DoS attack to influence the leader
selection and threaten the security of the system.

We introduce improved PBFT Consensus RLSCV to
improve the byzantine protocol security. RLSCV have two
features. One is the credit value in consensus which can only
be obtained through honesty behavior, all nodes credit value
is first initialized to one. The other is that the leader is
randomly selected by credit value, the higher the credit value,
the greater the probability that the node is selected to be the
leader.

Leader Selection In RLSCV (inspired by Algorand), the
Block form in Chameleon: Br = (r, Cr, Qr, H(Br-1).r
represents r round block, Cr represents all credit value in r
round, Qr is random seed which is carefully constructed and
can be hard for powerful adversary to manipulate. H(Br-1) is
the hash of the previous block. A potential leader of round r
is a node i based on the following function :

 .H(SIGi (r,Qr-1)) p. (1)

 p=Ni_credit_value/Sum_credit_value. (2)

 Ni_credit_value=log2(Bn) (3)

Here, Ni_credit_value represents the credit value of node
i, Sum_credit_value represents the overall credit value of the
consensus nodes. The higher the credit value, the easier it is
to be selected as a leader. In order to ensure that the credit
value is not always concentrated in a few nodes, we construct
a credit value growth function log2(Bn) based on the fact that
the log function have the slow growth character in the long
run . Bn is the sum of the block generated by the nodes as a
leader.

 Qr-1 is part of block Br-1, SIGi r, Qr-1 is a binary
string uniquely associated to i and r . Since H is a hash
function which have the character of randomness, H (SIGi (r,
Qr-1)is a random long string uniquely associated to i and r.

89

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

The symbol “.” in front of H (SIGi (r, Qr-1) is the decimal
point, so that Ri=.H (SIGi (r, Qr-1) is a uniform distribution
between 0 and 1 that uniquely associated to i and r. Thus the
probability that Ri is less than or equal to p is essentially p.

Note that, since node i is the only one capable of
computing his own signatures, it alone can determine
whether it is a potential leader. However, by revealing his
own credential SIGi(r, Qr-1), node i can prove to anyone to
be a potential leader of round r.

The leader Lr is the one whose hashed credential is
smaller than the hashed credential of all other potential
leader j: that is, H (SIGi (r, Qr-1) H (SIGj(r, Qr-1) . If
There are two many nodes in the area. We can also choose k
smallest H (SIGi (r, Qr-1) to participate into the consensus.

A node i can be a potential leader after participating in
the system at least k rounds, This reduce the risk of a large
number of malicious nodes joining the system suddenly to
influence the leader selection results and the Qr result. In fact
the potential leader determine the Qr.

D. Store Layer
Currently, most blockchain store all data in every nodes

to guarantee the safety of the system. Take bitcoin network
for example, from the Fig.2, we can see that the cumulative
block size is 160G bytes up to 2018 in bitcoin network.
Most mobile device can’t store such a large volume of data
and can’t participate into the consensus process. From the
cumulative block size of Fig.2 and the transaction rate of
Fig.3, we can also find that the cumulative block size
increase linearly with the transaction rate.

Fig.2 Blocksize in bitcoin network

Fig. 3 transaction rate in bitcoin network
Blockchain network’s storage scalability is still an open

problem. There are several methods try to solve the
scalability problems, Here we present one typical solutions:

 A trust to trust internet architecture blockstack try to
solve the storage scalability by storing the hash of the
immutable data in the blockchain and the actual data are
stored in the cloud[6]. If the consensus process need the
recent historical data, it will be low efficiency to get the data
from the cloud. Blockstack runs on bitcoin network , bitcoin
is concentration on mining power and the traffic is also
concentrated on a few autonomous area, It is easy to suffer
BGP hijack[7] .

In chameleon, we combine the advantage of Edge Cloud
storage, Central Cloud and the local storage without limit the
scope of consensus. There are two storage modes can be
selected for the area in Chameleon according to specific
scenarios.

1) Store All transaction in every nodes, this can be used
in financial scenarios.

2) Store one epoch block data such as one day or one
week and the previous block will be stored in the cloud, this
method is mainly used in IoT or mobile device scenarios.

As the first modes is widely used now ,let’s explain the
principle of the second mode. Each node in the area can
choose to saves the data of the most recent epoch such as one
day or one week, this is ideal for mobile and IoT scenarios,
since that the device in these two scenarios have very limited
storage capacity and must cooperate with the cloud. Just as
shown in Fig.2, the cumulative block size is almost 1 G bytes
per week, if the node just store one week or one day data,
most mobile device can participate into the consensus
process.

 The previous data will be stored in the local cloud, edge
cloud and the core cloud simultaneously in an encrypted
manner . The last hash value of previous block will be stored
in the node to maintain consistency. When Cloud databases
accept the block ,it will check the hash of the received block
and compare with the hash in the block, if it is the same ,the
cloud database will send a confirmation to the all the nodes
in the area. The nodes will run consensus protocol to make a
consensus of the cloud confirmations and then start the next
epoch.

There are several advantage of the second modes :

1) Block data is concentrated store on the cloud and it
will reduce excessive redundant data in the nodes. In many
scenarios , the data maybe not related to the previous data or
barely related to previous data ,if the node still store all the
data into the node , it will be a waste of the storage ability. In
this condition store the data on the cloud is a better and
economy choice. As long as the nodes participate into
consensus process, the data can’t be tampered and the safety
is not been trade-off.

2) As the block is stored on the local, edge and core
cloud synchronously, even if one or two cloud have been
failure ,the system can also operate well. In addition, edge
cloud and local cloud is widely deployed in the
communication network, it’s easy and convenient for the
node to store and get the historical block data timely.

E. Transaction Load balancing
In chameleon, we divide into several area, every area can

use different consensus protocol. To cope with the
emergence of unexpected peak transaction requirements,
clients often need to obtain resources that are several times
or even more than ten times higher than usual at peak
business hours, which puts pressure on the resource
utilization of area. Its marginal cost of guaranteeing service
quality is getting higher and higher if we simply improve the
capacity of area. In Fabric, we have conducted an simulation,
when the transaction is overloaded, it will start the view
change because of many transactions are not committed in
certain period. The view change will degrade the processing
performance greatly and the system will be in a vicious
circle .We do believe that the transaction level load

90

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

balancing is very crucial for blockchain to cooperate with
other area to share the unexpected peak transaction load. To
reduce the processing delay, we assume that the transaction
load balancing only happened in adjacent area. When the
load exceed the threshold which is dynamic changed
according to the different kind of transactions, the load
balancing mechanism will be started. There are two phrases
in load balancing. First is to select the select light load areas
to share the transaction load and the second is to conduct the
load balancing mechanism.

 Load is defined by the following parameters:

1) Storage utilization ratio(S), 0 S 1 # S= Storage
utilization /Storage capacity.

2) Transaction utilization ratio (T). 0 T 1 # T =Current
transactions rate/Transaction throughput

Definition of Load:

L=u1*S+ +u2*T (4)
The target optimization function LB is defined by

following parameters: In order to ensure that the entire
network uses the same metric, the parameters need to be
normalized.

1) Processing capacity that can be offered (P)

2) Time delay (T), time delay include the time delay
between two areas and the time delay of acquire the previous
transaction record in Cloud

3) Storage capacity that can be provided

LB=w1*Pn+ w2*Tn+ w3*Sn (5)
 Pn=P/Pmax ,Tn=T/Tmax, Sn=Sn/Smax (6)

wi is decided by the empirical value and the specific
scenarios.

 Global traffic balancing is an optimization problem. First
of all, the CA’s balancing algorithm check the load in each
area. When load in in one area exceeds the set threshold in
continuous time period, The CA will start the transaction
load balance mechanism. The algorithm will first search for
the maximum load area, and then find the adjacent area to
share the transaction load, taking into account factors such as
Processing capacity that can be offered , Time delay (T)
between the overload area and the corresponding destination
area, Storage capacity that can be provided in adjacent area.
If the capacity of the destination area can’t meet the
requirement of the overload area, then the algorithm will find
several adjacent area to share the transaction loading. At last,
transactions load will be allocated to other areas and the
utilization of the entire network resources will increase.

The follow are the pseudo code of the transaction load
balancing of Chameleon:

Algorithm of Transaction Load balancing
do

for(i=1;i<=n;i++) #there are n area in blockchain network
Calculate_Load() #calculate the load in every area

Li=u1*S +u2*T #the area I transaction load
if Li>threshold in continuous time period

return the maximum Li and the adjacent Lj(j=1,2…k) of Li
do

for(j=1,j<k,j++) #k is the number of adjacent area of maximum Lj
load_balance()
LBj=w1*Pn+ w2*Tn+ w3*Sn #LBj is the optimization function of area j
return minimum Lj # destination area to be diverted
execute load allocation

while((Li-threshold)> (threshold-Lj)) /** make a judgment whether adjacent area
can provide enough processing power**/

while(Li<threshold) # update the information and run the algorithm again

If there are hundreds of area, we can optimize the
algorithm, use the sliding windows methods such as we
calculate the five maximum at once and at least five
destination area to be diverted at one time. It will reduce the
algorithm complexity by five times.

The second phrase is to synchronize the data to the
destination areas. Here we explain the mechanism in fig.4:

Area-2

Area-1

Area-3

Client

 Detect the transaction load and triger load balancing methenism

CA Cloud

Inform the area going to share the transaction load

 request the block data of Area-2 when necessary

 Synchronize the current
block data in Area-2

Area

 the transaction belong to
Area-2 is redirected to Area-3

 CA allocate overload transaction to Area-3

 Confirm the load balancing operation

Send the block that have been processed back to Area-2

Fig. 4 the transaction load balancing process

Area-1 and Area-3 are adjacent to area-2. First, CA will
monitor the load in every area, when the Area-2 is
overloaded, CA will trigger load balancing mechanism and
choose area 3 to share the transaction load. Second, CA will
inform the Area-3 to prepare for processing the transaction
form Area-2 and also inform the Area-2 of the area going to
share the transaction load. Third, Area-3 confirm the load
balancing operation and tell the CA it’s ready. Fourth, Area-
3 will synchronize the current block data in Area-2.it is
similar with the Elastic State Machine Replication[8].The
leader in area2 will send the data using multiple signatures to
the leader in the area3 to guarantee the integrity and the
correctness, and the destination area will broadcast the data
to all nodes. Fifth, the CA will allocate overload transactions
to Area-3 through changing the transaction type to
cooperative transaction shown in TABLE I. Sixth, Client will
send the cooperative transactions to Area-3. Seventh, if the
transactions are related with the previous transactions, Area-
3 will get previous transactions from cloud. Finally, the
block that have been processed by Area-3 will be sent back
to Area-2 with multiple signatures. Area-2 will validate the
block and store the block into the node. Repeat the above
process until the there is no overload transactions in Area-2.

IV. SIMULATION

We conduct a group of simulations to verify the
feasibility and efficiency our load balancing process in
Chameleon on the MATLAB platform. In our simulation, we
use Poisson process which is widely used in client and server
architecture to simulate the transaction arriving rate. To be
simple, Load is positive correlation function related with
transaction arriving rate per second, if the load exceed 80%
in certain period, the load balancing mechanism will be
triggered. We also assume all area have same processing
ability, i.e.400 transactions per second, a realistic parameter
come from realistic testing on Fabric with four nodes using
the PBFT consensus algorithm. We testing the transaction
throughput in our laptop using Ubuntu 16.04.03 on VMware
Workstation14, our laptop is configured with intel i7-
7700HQ.

We assess the performance and efficiency of the load
balancing mechanism in Chameleon by comparing the load

91

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

distribution before and after load balancing in every area
under different load conditions. As load is constructed by the
storage and the transaction utilization ratio, which also refer
the resource utilization ratio. There are five areas in our
simulation and they are adjacent to each other.

The following figures are the simulation results:

Fig.5 Transaction rate is 400 in Area2

Fig. 6 Transaction rate is 600 in Area-2

Figure 7 Transaction rate is 800 in Area-2
As shown in Fig.5, Transaction rate Area-2 is 400 which

is the maximum transaction processing rate, obviously, it is
overloaded. The system will trigger the load balancing
mechanism and will chose the Area-3 to share the overload
transactions because the load in Area-3 is the smallest and it
can provide the maximum processing capacity than any other
areas. We can find the load in Area-2 have drop to 0.8 and
the load in Area-3 have increased to 0.5 after load balancing.

When the load continue grown to 600 transaction rate in
the Fig.6, It will trigger the load balancing mechanism as
well, the CA will calculate the load balancing area to share
the overload transactions in Area-2. Just like the Fig.5, the
CA will choose Area-3, but found that the Area-3 can’t offer
enough processing ability and have to choose another area,
that’s the Area-5. After this, the overload transactions in
area-2 will be shared to Area-3 and Area-5. We can find that
after load balancing, the load in Area-2 have drop to the 0.8
and the load in Area-3 and Area-5 have increase.

As shown in Fig.7, The overload area-2 is 800, it’s the
double of the process ability in Area-2 which is maybe
happen in certain situation. The CA will calculate the load
balancing area to share the overload transactions after
detecting the overload. Finally, it will choose the area-3,
area-5 and area-1 to share the load just as shown in Fig.7.
After load balancing we can find that the load is evenly
distributed in every area.

As shown in Fig.5, Fig.6 and Fig.7, The entire load
balancing process is very clear, i.e. which area is the first to
choose, which area is the last to choose. The comparison of
the load distribution before and after the load balancing in
simulation result show that our load balancing mechanism in
Chameleon can cope with the large amount of bursting
transactions and can also greatly improve the resource
utilization .

V. CONCLUSION

In this paper, we introduce the a scalable and adaptive
permissioned blockchain architecture Chameleon. First, We
design the transaction format to guarantee the QoS of
transactions ,so that the nodes can process the transactions
according to their priority. Second, we improved the PBFT
by introduce the randomness in leader selection based on
credit value , this greatly improve the security of consensus
process. Third, we combine the advantage of cloud to reduce
the excessive block data in node, this is very useful in many
non-financial scenarios. Finally, we introduce the transaction
level load balancing mechanism and have a simulation to
verify the performance of our system.

Although Chameleon have many advantages compared
with existing block chain architecture, it is still a proof-of-
concept. We leave to future work of the implementation of
Chameleon. Additionally, how to reduce the overhead when
one area share the transactions with the other area under the
overload situation need to be further studied in the future.
Furthermore, to avoid the CA becoming the bottleneck of the
system, parallel processing in the CA also need to be further
researched in the future work.

VI. ACKNOWLEDGMENT
This work is supported by the Fundamental Research

Funds for the Central Universities under Grant
No.2018YJS009 and 973 program under Grant No.
2013CB329101.

92

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

REFERENCES

[1] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P.
Saxena, "A secure sharding protocol for open blockchains," in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 17-30.

[2] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford,
"OmniLedger: A Secure, Scale-Out, Decentralized Ledger," IACR
Cryptology ePrint Archive, vol. 2017, p. 406, 2017.

[3] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
"Algorand: Scaling byzantine agreements for cryptocurrencies," in
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 51-68.

[4] C. Cachin, "Architecture of the Hyperledger blockchain fabric," in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[5] M. Castro and B. Liskov, "Practical Byzantine fault tolerance," in
OSDI, 1999, pp. 173-186.

[6] M. Ali, "Trust-to-trust design of a new Internet," Princeton University,
2017.

[7] M. Apostolaki, A. Zohar, and L. Vanbever, "Hijacking bitcoin:
Routing attacks on cryptocurrencies," in Security and Privacy (SP),
2017 IEEE Symposium on, 2017, pp. 375-392.

[8] A. Nogueira, A. Casimiro, and A. Bessani, "Elastic state machine
replication," IEEE Transactions on Parallel and Distributed Systems,
vol. 28, pp. 2486-2499, 2017.

93

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

